"Oops, I Did It Again" - Security of One-Time Signatures Under Two-Message Attacks

نویسندگان

  • Leon Groot Bruinderink
  • Andreas Hülsing
چکیده

One-time signatures (OTS) are called one-time, because the accompanying reductions only guarantee security under single-message attacks. However, this does not imply that efficient attacks are possible under two-message attacks. Especially in the context of hash-based OTS (which are basic building blocks of recent standardization proposals) this leads to the question if accidental reuse of a one-time key pair leads to immediate loss of security or to graceful degradation. In this work we analyze the security of the most prominent hash-based OTS, Lamport’s scheme, its optimized variant, and WOTS, under different kinds of two-message attacks. Interestingly, it turns out that the schemes are still secure under two message attacks, asymptotically. However, this does not imply anything for typical parameters. Our results show that for Lamport’s scheme, security only slowly degrades in the relevant attack scenarios and typical parameters are still somewhat secure, even in case of a two-message attack. As we move on to optimized Lamport and its generalization WOTS, security degrades faster and faster, and typical parameters do not provide any reasonable level of security under two-message attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secure Signatures and Chosen Ciphertext Security in a Post-Quantum World

We initiate the study of quantum-secure digital signatures and quantum chosen ciphertext security. In the case of signatures, we enhance the standard chosen message query model by allowing the adversary to issue quantum chosen message queries: given a superposition of messages, the adversary receives a superposition of signatures on those messages. Similarly, for encryption, we allow the advers...

متن کامل

Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World

We initiate the study of quantum-secure digital signatures and quantum chosen ciphertext security. In the case of signatures, we enhance the standard chosen message query model by allowing the adversary to issue quantum chosen message queries: given a superposition of messages, the adversary receives a superposition of signatures on those messages. Similarly, for encryption, we allow the advers...

متن کامل

Cryptanalysis of some first round CAESAR candidates

ΑΕS _ CMCCv₁, ΑVΑLΑNCHEv₁, CLΟCv₁, and SILCv₁ are four candidates of the first round of CAESAR. CLΟCv₁ is presented in FSE 2014 and SILCv₁ is designed upon it with the aim of optimizing the hardware implementation cost. In this paper, structural weaknesses of these candidates are studied. We present distinguishing attacks against ΑES  _ CMCCv₁ with the complexity of two queries and the success ...

متن کامل

An ECC-Based Mutual Authentication Scheme with One Time Signature (OTS) in Advanced Metering Infrastructure

Advanced metering infrastructure (AMI) is a key part of the smart grid; thus, one of the most important concerns is to offer a secure mutual authentication.  This study focuses on communication between a smart meter and a server on the utility side. Hence, a mutual authentication mechanism in AMI is presented based on the elliptic curve cryptography (ECC) and one time signature (OTS) consists o...

متن کامل

Generic Security-Amplifying Methods of Ordinary Digital Signatures

Digital signatures are one of the most fundamental primitives in cryptography. In this paper, three new paradigms are proposed to obtain signatures that are secure against existential forgery under adaptively chosen message attacks (fully-secure, in short), from any weakly-secure signature. These transformations are generic, simple, and provably secure in the standard model. In the first paradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016